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20. ABSTRACT (Cont.)

Each field is represented by a potential matrix. The rf vector poten-
tial matrix is computed from an integration of Kosmahl and Branch's
field formulation. The magnetic vector potential matrix is derived
from ideal current loops representing the field sources. The space
charge potential matrix is obtained by an extension of Hockney and
Buneman's Fourier Analysis Cyclic Reduction method to cylindrical
cooi'dinates.

The trajectory steps are then computed from analytic integrals of the
general cross-field equations of motion, using a fast subroutine for
simultaneous interpolation and differentiation of the potential ma-
trices. '

A comprehensive example.is given of output obtained from the program.
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SUMMARY

This report describes tiane development of a cor_.uater program
for calculation of three-dimensional electron trajectories
in a coupled cavity traveling wave tube. RF, magnetic and
space charge fields are included without paraxial approxima-
tions. Both PPM and solenoid magnetic fields are admitted.

Each field is represented by a potential matrix. The rf
vector potential matrix is computed from an integration of
Kosmahl and Branch's field formulation. The magnetic vector
potential matrix is derived from ideal current loops repre-
senting the field sources. The space charge potential matrix
is obtained by an extension of Hockney and Buneman's Fourier
Analysis Cyclic Reduction method to cylindrical coordinates.

The trajectory steps are then computed from analytic inte-
grals of the general cross-field equations of moticn, using
a fast subroutine for simultaneous interpolation and differ-
entiation of the potential matrices.

A comprehensive example is given of output obtained from the
program.

Documzentation associated with this report available from NELC:
1. Users Manual for TWTVA Traveling Wave Tube Trazjectory Computation
2. Source program listing

3. Computer card deck
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1.0 OBJECTIVE

The general objective of this contract is the development of
a computer program for calculation of beam trajectories in
coupled-cavity traveling wave tubes.

Specific objectives set out in the statement of work include
the following:

i) the program will be in FORTRAN IV level H.

ii) the beam will be reprecented by a disc model up to the
beginning of the saturation region.

iii) the beam will be represented by a ring model of at least
96 rings per wavelength in the saturation region.

iv) the speed of the program shall aliow the 96 ring calcu-
lation to be carried out in 5 minutes of CPU time, or
less, per cavity, on an appropriate computer.

v) che program shall include a self-contained routine to
generate an rf vector potential matrix, to avoid depen-
dence on the Los Alamos program LALA.

Though not stated, it was understood that the program would
include rf, magnetic and space charge fields, without paraxial
approximations, and that the magnetic fields should include
both uniform (solienoid) and nonuniform (PPM) cases. It was
also understood that the interaction between the beam and the
rf fields would be computed in both directions -- that is, the
fields would be appropriately modified by the computed beam
trajectories, not merely applied from external sources.

This report describes the analytical backgrouna to tlie devel-
opment of the computer program. It is not necessary to read
the report in order to use the program: a separate User's
Manual gives all *the instructions necessary for setting up a E
case and interpreting the results. But familiarity with this

report is necessary for anyone intending to modify the program.

The analysis is specific to coupled-cavity TWT circuits at
this stage, but much of it is sufficiently general for future
application to other O-type tubes.
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2.0 DESCRIPTION OF THE PHYSICAL MODEL
2.1 The Tube

The tube will be represented as a sequance of gaps and tun-
nels, as shown in Figure 1; there are rf voltages across the
gaps, determined by the rf power flowing in each cavity, and
the rf fields due to any one gap are taken to extend irto the
tunnels on either side as far as the midplanes. Beyon. these
planes the fields due to the adjacent gaps take over. This
assumption that the fields due to one gap become negligible -
beyond the midplanes is, of course, not exact; but Iur typical
tube structures the fields at these planes are 25 to 30 dB
below the gap fields, so that it is a reasonable simplifying
assumption. A numerical example supporting this will be found
at the end of Section 4.7.

2.1.1 Specific Model

In order to have a ccnsistent set of test cases for numerical
trials and illustrations, an imaginary (but not unrealistic)
tube design was constructed.

Taking a goal oi 50 kW peak output, 30% bandwidth centered on
10 GHz, a preliminary rule-of-thumb TWT program gave 36 XV,
1.2 yP for the beam, .203" for the tunnel diameter, .297" fog
the cavity period, 9 ohms interaction impedance, and 1.02x10
m/s phase velocity (1.48m per cavity) at 10 GHz. 7The expected

~electronic efficiency was 24.9%.

After adjusting the voltage upward to 38 kV at 1.1 pP to allow

for relativistic effects not included in the simple program,
and rounding off other parameters to convenient values, the
following set of nominal parameters was adopted:

Tube type: ‘Navtest!

Frequency: 10 GHz

Power output: 20 kW peak

Tunnel diameter .2"; cavity period .3", magnet period .6";
gap .1".

Beam 38 kV 1.1 uP (approx. 8 amps), b/a = .7.

Cavities = 30; impedance 10 ohms; loss 0.1 dB/cavity;
sever gt cavities 12 and 13, phase velocity
1.0x70° m/s.

The tube structure is shown in Figure 2(a).
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This case was run on the large signal program [1]%*, with the
results shown in Figure 2(b). The upper block shows the input
data, followed by various derived quantities, including the
equivalent Pierce parameters. The lower block shows the power
saturating at 61.8 kW, _.e. about 1 dB margin, at 43 dB gain.
The energy balance in the last column is within .3 dB, which
is quite satisfactory. The »utput is plotted in Figure 2(c)
showing a very normal type oi Applegate diagram for a high
power over-voltaged tube. The electronic efficiency of 22.2%
is somewhat less than the 24.9% estimated by the preliminary
program, but not unreasonable. Overall, this seems to be a
self-consistent design for program test purposes, and its
parameters will be used for the test cases for the rf field,
magnetic field, etc.

2.2 The Beam

The beam will be represented by a one-wavelength segment,
traveling down the tube at the dc beam velocity. The assump-
tion is made that this wavelength is preceded and followed by
identical wavelengths: this assumption allows us to do two
things: .

i) compute space charge forces by a fast Fourier analysis
method, which implies that the segment considered is
part of an infinite sequence of identical segments;

ii) replace any element of the beam which leaves the segmnt
at one end, by a corresponding element entering at the
other end; i.e., an element can always be moved up or +
down one beam wavelength to keep it in our working range.

Since the tube is intended to be an amplifier, the bunching
in general increases along the tube, so the assumption of
identical wavelengths ahead and behind cannot be strictly

(1] J.R.M. Vaughan, 'Galculation of Coupled-Cavity TWT
Performance', IEEE Transactions on Electron Devices,
ED-22 #10, October 1975, pp. 880-890.

* References will appear as footnotes on the pages where
they first occur, and will also be collected in a com-
plete list at the end of this report.

1 See page 93. |
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CASEt  NAVIEST
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; DISK CHAKGE 3.3v¥51E-11 CB '
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Figure 2(b) . -6-
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correct. However, the tunnel walls exert a shielding effect

which diminishes the effect of more distant charges very

rapidly, so that ervors in estimating their magnitudes have 1
very little effect on the final results. Indeed, the real

reason for including anything more than adjacent wavelengths

in the space charge computation is that they can be expressed

as a geometric progfession whose 'sum to infinity' is a sim-
pler expression (T—:_?) than the sum of even three terms.

The assumption iz most likely to become unrealistic at the
final cavity, where the next wavelength ahead is likely to
be very different from the one being tracked, if the effi-
ciency is high. Ultimately we may be able to track three
consecutive wavelengths, the outer ones acting as guards for
the center one.

2.3 Subdivision of the Beam

Initially the one-wavelength segment of the beam will be
divided into 12 or 24 discs and these will be tracked for

the full length of the tube to establish initial values of
the rf voltages and phases at each gap, using an existing
disc model computer program [1]. We shall then backtrack to
the start of the saturation region, subdivide each disc into
2, 3 or 4 concentric rings, and repeat the calculation from
that position; with each ring now moving independently under
the action of the applied fields. Although we refer to these
elements of the beam as 'rings', we do not think of them as
hydrodynamic volume elements in the sense that Kosmahl and
Albers [2] consider them. In this work, what_is actually
tracked is a 'super electron' having about 107 times the
charge and mass of a real electron, which represents the
electrons in its neighborhood. Thus discussion of 'changes
of shape' of a ring are not meaningful in this ccntext: the
ring is represented by a point charge which has no shape, but
it will still be referred to as a ring for brevity. The pre-
cise charge is chosen so that, when multiplied by the number
of rings per wavelength, we obtain the same total charge as
the real beam, subject to a small correction to be discussed
later. '

[2] 'Three-Dimensional Evaluation of Energy Extraction in
Output Cavities of Klystron Amplifiers', H. G. Kosmahl
and L. U. Albers, IEEE Transactions on Electron Devices,
ED-20 #10, Oct. 1973, pp. 883-890.




2.4 The Fields
The fields acting on a ring are:
1) the rf field;
11) the space charge field;
iii) the magnetic field.

In the preliminary disc model calculation the magnetic field
does not enter, and only tre axial components of the rf and
. space charge fields are efiective. In the ring model part

i of the calculation, »oth axial and radial components of all
three fields are to e included, and are not to be limited
to paraxial approximations.

It will be noted that dc electric and rf magnetic fields are
not included; the effectsof the dc electric fields in the gun
are represented by the axial injection velocity with which
the electrons are started, and 'velocity-Jjump' sections are

3 not at present included. Several past studies have shown

] that the rf magnetic fields are negligible for foreseeable

1 microwave tubes.

There are various methods known for representing the fields
in computation. They may be derived from analytic solutions
of the wave equation or Laplace's or Poisson's equations as
appropriate, or from Green's functions,or from the gradients
of a potential function. We have available a fast trajectory
algorithm of proven accuracy | 3], which derives the fields by
interpolating the gradients of an array of potentials on a
rectangular grid which overlays the interaction region. Thus
our working representation of each of the fields will be a
matrix of potentials at the nodes of a suitable grid. The
mesh sizes and locations of the grids will be discussed in
detail in Section 2.6. There will be a separate grid and
separate matrix for each of the three fields.

1 [3] ‘'Flectron Ray-Tracing Program for Image Intensifiers',
Final Report, Contract DAAKO2-67-C-0182, by J.R.M.
Vaughan and O. Buneman, Sept. 1970.
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2.5 Matrix Representation of the Fields

For each field, we have the choice of constructing either a
scalar potential matrix or a vector potential matrix; for
reasons that will become apparent later, we choose a matrix
of radius x vector potential for the rf fieids, a scalar
potential matrix for the space charge fields, and a matrix
of vector potential x radius for the magnetic field. These
differences are not apparent to the ordinary user., but must
be recognized by anyone intending to delve into the program
to modify it. The required fieids (potential gradients?rare
derived from a scalar potential matrix by differencing the
matrix elements in the same direction, but from a vector
potential matrix by differencing in the perpendicular direc-
tion. Thus a scalar (R,Z) matrix like this:

1T 2 3 4 5 ...
1 2 3 l" 5 @ e e
12 3 4 5 ...

would represent a wniform axiai field; a 'vector potential
x radius' ratrix for the same aaial field would look like
this:

0O O O O O

1 1 1 1 g

4L 4 4 4 4

9 9 9 9 9 ...

(In practice, of course, the elements are not simple integers,
and the scaling factors are different for the two cases, but
the vector potential matrices dc always have zeroes along the
axis.) It may be worth noting here another possible source

of confusion: one of the unfortunate conventions of mathemat-
ics is that matrices are printed with the row numbers increas-
ing downwards, which conflicts with Cartesian coordinates with
y increasing upwards. Thus we shall draw meshes superimposed
on the interaction space of the tube in conventional Cartesian
form, with the horizontal lines {representing r rather than y)
increasing upwards. But in a straight printout of the corre-
sponding matrix, the top line of the matrix will correspond to
the bottom line of the mesh, and vice versa. In some demon-
stration cases we shall deliberately program the computer to
print a matrix in reverse row order for clarity, but a simple
MAT PRINT statement does not do this.

i

=




If it ié later decided to include dc electric fields to rep-
resent velocity Jjump sections, a scalar potential matrix will
be used for the electrostatic fields.

2.6 Matrix Dimensions

The fast interpoiation routine INTRA foir the potential graa-
ients requires the potentials at 9 surrounding mesh points:
thus for an electrcn at Q in Figure 3, the nearest mesh point
is P5, and the remaining points P4 to P4y and Pg to Pg are then
determined as shown.

P7 . Pg Pg
R
P P P
3 6
h F .
Z P> P

Figure 3: Mini-Matrix for INTRA

The routine fits an exact quadric surface through these 9
values, and obtains the gradients of the two principal tan-
gents at Q to th: quadric, resresenting the field components
at Q. (The routine INTRA is extremely compact, and does not
explicitly derive the quadric, Lut cuts straight through %o the
gradients, without neglecting any terms, so that it is correct
to machine accuracy. It was derived in reference [3 , where
its ad-vantage over 5 point interpolation was demonstrated.)

One can see from Figure 3, that the matrix must extend at
least one-half mesh in each direction beyond any position
that an electron @ can occupy during t')e calculation, so
that 9 surrounding potentials will always be available.

In the radial direction, an electron is limited by the tunnel
wall and the axis (it can pass through the axis, but its rad-
ial coordinate is by definition always positive, so that it

appears in the R-Z plane to bounce off the axiss. Thus the
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minimum radial mesh system would extend from one-half mesh
below the axis to one-half mesh above the wall. But there

is such obvious convenience in having one of the mesh lines
along the axis, and another along the wall, that we choose

to make every matrix (for rf, space charge aad magnetic
fields) extend radially from 1 mesh below the axis to 1 mesh
above the wall, recognizing that this makes the radial matrix
dimension greater by 1 than it would strictly have to be.

The number of meshes hetween the axis and the tunnel wall
need not be the same for all three matrices. For the ~f and
magnetic field matrices, the numbers may be chosen at will --
the larger the number, the more accurate can be the represen-
tation of the field, but the larger is the memory requirement,
and the more computation is required to set up the matrix.

It does not, however, affect thz amount of computation in the
main ring-tracking part of the program: at each step 9 adja-
cent values have to be extracted and interpolated, and it
makes no difference whether they are 9 out of 100 or 9 out

of 1000. Typical values for the number of radial meshes will
range from 4 for rough calculations or debugging, to about 20
for precise work (there is no real advantage in going to rad-
ial mesh numbers that are higher than the ratio of tunnel
radius to ferrule cormer radius, which is typically not more
than about 20). The radial mesh numbers are denoted Nggr for
the rf vector potential and Nyp for the magnetic vector poten-
tial matrices. Allowing for the guard rows, the matrices run
from -1 to Ncg + 1, and -1 to My + 1. When the program calls
for 'mesh numbers', it is the basic numbers Ngr, Nmp, etc.
that are to be entered. "he program will add %he guard rows
and columns as necessary. i

For the space charge matrix, the fast algorithm to be given
in Section 5 requires that the number Ngr of radial meshes

be a power of 2. It will usually be 4 or 8, possibly 16. In
this case the choice does affect the main computation speed,
since this entire matrix has to be recalculated after every
time step, and this is the pacing item for the whole program.

In the axial direction, the number of meshes is similarly a
free choice for the rf and magnetic field matrices (except
that it must be an even number for the rf matrix; an odd num-

ber would be an unlikely choice for either matrix in any case).

But the choice is strictly limited to 6, 12, 24 or possibly 48
for the space charge matrix. The rf mesh is physicaily tied
to the cavity period, as shown in Figure 4(b), but with an
extra mesh at each end. This matrix is stationary, but is
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repeated for every cavity. The matrix represents the poten-
tials for 1 volt peak rf across the gap at zerc phase, and
in use the gradients will be multiplied by appropriate volt-
age and phase factors for each cavity. If the cavity period
is divided into Ngp parts, the matrix numbering will run from
-1 to Ngcao + 1. Ngpa will typically be not less than 4 nor
more than 50. ;

The magnetic field matrix, Figure 4(c), will similarly be
tied to the magnet period. For 'single period' focusing
(alternating magnet polarities in each cavity) this is twice
the cavity period; for 'double periocd' focusing, the magnet
period is four times the cavity period. There is also the
possibility of focusing systems being used which do not tie
the magnet period tn the cavity period at all, so we shall
allow the magnet pericd to be an independent variable, but
with the expectation that in most cases it will be specified
as 2 or 4 times the cavity period. An example of a nonuni-
form field that was not tied to the cavity period would. be

a field produce¢ by a solenoid of several coils with inde-
pendent current contrcls, so that a 'programmed' field could
be generated. This would be treated as a periodic field
whose period extended over all the saturation region cavities,
so that the computation would never get beyond the first per-
iod. If tne magnet period is divided into Nymp parts, the
magnet matrix will run from -1 to Nmp + 1, agé will be re-
peated for every magnet period. Typical values of Nyp will
be from 4 to 24. For both rf and magnetic field matrices,
there is a two mesh overlap of consecutive matrices, but
there is no confusion as to which one is to be used for
rings in the overlap range: if a ring is on or to the right
of the tunnel midplane, it uses the matrix on the right; if
it is to the left of the midplane, it uses the matrix on the
left.

If the magnetic field is uniform (solenoid focusing), it is
not necessary to construct a magnetic matrix at all; the
trajectory program will allow for a uniform field by analytic
methods.

The space charge matrix is different in character: the number
of meshes in one beam wavelength must be one of the numbers
for which a superfast F.F.T. exists; usually it will be 12

or 24; and the corresponding grid is not stationary but is
moving with the beam. (Fig. 4(d)) If the number of meshes
is Ngp, we can arrange that the mesh position of a ring is
always within the range 0.5 to Ngp + .5 (since we have al-
ready agreed that a ring can be moved up or back 1 beam wave-
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length to keep it in range), so that this matrix runs from
0 to NSA + 1.

In the Super Basic debugging version of the program, the
mAatrices can be dimensioned exactly as written (e.g., -1

to 9 radially, O to 13 axially for a nominal 8x12 space
charge matrixs, but for the working Fortran version there

is the added complication that zero or negative indices are
inadmissible, so that all the indices have to be shifted up-
ward by 1 or 2 as the case may be. This is a thorough nui-
sance, and it is to be hoped that eventually a version of
Fortran will come out that, iike PL/1 and Super Basic, allows
negative or zero indices. In the meanwhile, it is a quirk to
be recognized by anyone digging into the program details, but
irrelevant to the ordinary user.

Since the axial and radial mesh sizes for each matrix are
determined independently, the meshes will not in general be
square. Normally the choices made are such that they are
elongated in the axial direction; the interpolation routine
allows for this, but there is some advantage in making
choices that do not result in extreme elongation -- say,

not more than 8:1. It does not appear likely that a case
would ever arise in which the meshes were elongated radially.

2.7 Coordinate Svstems

The basic coordinate system of the program is a stationary
Cartesian system in MKS units: the Z axis lies along the

tube axis, and the origin is at the tunnel midplane on the
entrance side of cavity #1. The Z coordinate of a disc or
ring at any time is its distance in meters from this plane,
and the R coordinate of a ring is similarly in meters. R
will be broken down into X and Y components in the trajectory
computatlon, the XZ plane being the plane initially contain-
ing a super-eiectron. (It will move out of this plane unless
the magnetic field is zero everywhere.) The XYZ axes remain
fixed, but each super-electron has its own RZ plane which
rotates about the Z axis so that it always passes through

the current position of the super-electron, as shown in
Figure 5.

Each of the three matrices constitutes an auxiliary coordi-
nate system in whici: the units are tne mesh sizes. For each
ring, we shall know from its Z coordinate which cavity and
which magnet period it is in, s¢ we shall subtract the Z
coordinate of the origin of the matrix for that cavity or

f
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Figure 5:

Mesh line numbering and Node numbering
for INTRA. Three different meshes are
used for the rf vector potential, the
magnetic vector potential, and the space

charge potential, but all are numbered in
the same way.
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magnet, and divide by the axial mesh size to get the relative
position in mesh units.

Similarly the radial position in mesh units is the MKS r
divided by the radial mesh size, usually different from the
axial mesh. The relative position in mesh units then allows
us to obtain the gradients representing that iield.

The same procedure applies to the moving grid in which the
space charge forces are evaluated. This grid moves with the
‘dc beam velocity', but this term is slightly ambiguous when
potential Cdeopression is taken into account. For reasons

given in {1 we choose the velocity at a radius b//3 in the
initial uniform beam as tne nominal dc beam velccity. The
moving grid is assigned this velocity. and retains it through-
out the motion, so that in saturation the beam is mostly slid-
ing back through it. The zero of time is the instant at which
the origin of the moving grid passes the origin of the fixed
MKS coordinate system. Since the zero of the moving grid-is
at its left-hand end, this implies that the beam segment to

be tracked crossed the entrance plane (mid-tunnel on the left
of cavity #1) before t=0, and is aiready distributed thrcugh
cavity 1 and part of cavity 2 at t=0 (the 1 wavelength beam
segnent is typically about 1-3/4 cavities long).

It is evident that this use of four separate coordinate sys-
tems involves ar enormous number of transformations, but they
are extremely simple and fast overations on the computer. To
compel all the fields to use a common set of mesh units would
force undesirable compromises on ail of them. By letting each
grid be independent, and determined only by its own constraints
and accuracy needs, while relating each to the underlying MKS
coordinates, we retain great flexibility, and freedom to in-
cosrorate additional matrices, such as one for electrostatic
fields if we want to. To this writer at least, there is alco
a strong psychological advantage in using MKS units as the
basic system, rather than normalized units such as Pierce's

y. it gives a feeling of knowing where the electrons'really
are!. Certainly if programming errors or incorrect data en-
tries result in unrealistic values, this becomes much more
obvious if they are expressed in familiar units.

-17-
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2.8 Input Dimensions

Since tube drawings are still often dimensioned in inches,
the user is allowed to make a choice of entering 211 linear
dimensions in either inches or millimeters. The choice sets
a conversion factor CLIN to either .0254 or .001 respective-
ly. Once made, the choice must be adhered to for all inputs
involving linear measures.

The program then converts all lengths and distances to meters
by multiplying by CLIN. Output coordinates are converted to
millimeters, but conversion back to the input units couid be
substituted very easily if this is preferred. This use of
the most familiar units for input is considered of great
importance for avoiding wasteda runs caused by incorrect data
entries.

An example of the very straightforward input for the prelim-
inary time-sharing version of the program is shown in Figure
6. The user needs to know the physical parameters of the tube
he wishes to have calculated, and to have some idea of the
accuracy level he wants, to allow a suitable choice of matrix
dimensions, but he need know nothing more about the progran.

The FORTRAN input is, as always, somewhat more restricted in
format, but is fully described in the User's Manual.
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OlL, TWEINP
READY = SBA!
KNH, M, 8192____10000

TthNP_ INPUT FOR HIRG MODEL PRUGRAM 01720716,

* PAKT 1t GENERAL® .
%_ INPUL DATA ON FILE (Y/N) ? N
‘ CASE IDENTIFICATION 7 NAVTEST
; LINEAR UNITS (1d OR MM) 7 IN
» PAKT 23 TUBE PHYSICAL DESCwIPTION: )
# TLEM | TUNNEL DIAMcTER ? .2
4 2 CAVLITY PERIOD 7 .3
o 3 GAP LENGTH o ? .l ) .
n 4 TOUAL # OF CAV.TIES 7 30
" 5 NU. OF SEVER CAVITIES ? 2
M 31 SEVER CAVITY HuMBLRS 71202
nl 6 RING CALC STARL AT CAV # ? 24
i 7 FIELD INTENSIFICATION FACTOR ? 2.5
Lo PAKL 3% CULD TEST UATA:s . ) i
1 b PHASE VEL (M/SEC/IVELS 7 10.0
g 9 IMPEDANCE- (OHM>) 710

10 LOSS (LB/CAV) 7 .0

PAKT 43 MAGNETIC FIELs DATAs .
Il UNIFORM (1) OR PERIODIC (2) ?
|3 PERIUDIC LENSTH ? .6
32 NUMBEK OF CUIL> (MAX 10) ?
33 FOR EACH COIL oNTER K, Z M
TCOIL 1T L 148,-.15,~158.2 S
COIL 2 ? .148, .15, 169.56
COIL 3 7 .148, .45,1_-169.8

Wy O COIL 4 7 .148, .15, 158.2  _ _ _
PAHT 53 kF DATA3
" 14 FREQUENCY (GidZ) 710
¥ 15 DRIVE PON!R CanT3y . 2.3.2
a. PART 63 BEAM DATA
n 16 BEAM VULrAOE {¥v) : ? 38
v, V1 MICROPERVEANCE . AR S - :
5 18 NUALNAL B/A ? LT

i PAKTS 1 AND 8 STANUARL (S) Ok NON-STANDARD (N) ? N

- »_PAKT 73 BEAM MODEL3

¥, 19 ¢ OF DISCS PER WAVELENGTH 712 T
g 20 #:0F RINGS PER DISC 72

_PART o3 PUTENTIAL MESH DIMENSIONSS - e
o 21 SCHAI'T  RADIAL, AXIAL ? 4,12
o 22 RFMAT:  RADIAL, AXIAL ? 4,12
@ 23 MAGNAT: RADIAL, AXIAL 7 4,16

4

w; COKKRECTIONS (Y/N7 2 N

¢ FILE DATA (Y/H) 2 Y e R
o FILE NAME (Hui) 7 NAVIST

v INPUT SAVED ON “NAVISLY :

&8

v SPACE CHARGE DENSITY  7.140E-03 CB/M™3

viOMEAN POLENTLAL DEPRESOION 876.6 VOLTS

v PULENTIAL DEVRESSIuUN G AXIS 1086.6 VOLTS

» MEAN BEAN VELUCLLY 10.790x1ET M/SEC

n BEAM CURKENL  8.1403 AMP

W BEAR wAVELENGIH 425 IN o=
»i BILLOUIN FLelb  v41.6 GAUSS

wt FIME SIEP ¥ DISC CALC, b.33333 PICOSEC

ol FO RING CALC, 5.665%25 PICOSEC i
"
~w MKS SCALED DATA SAVED UN “NAVMKS’
ENv
. Figure 6: Program Input
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3.0 MAGNETIC FIELD

The only restriction placed on the magnetic field is that it
be axisymmetric, that is, that it have no dependence on 8.

In PPM structures the field hecomes purely radial at certain
Planes, and of course it is purely axial at the centers of
the gaps; if we are to model this complete range of directions

"accurately, we cannot allow any paraxial approximations. The

method to be described passes from purely axial to purely

radial with no loss of accuracy, and constitutes a valid solu-
tion of Laplace's equation. (Some published approaches to this
problem use ad hoc expressions which do not satisfy Laplace [4]).

Primarily the magnetic field is represented in the computer
program by the parameters of a set of ideal circular current
loops, usually not more than 10 in number. These loops are
chosen so that the field they generate matches the actual field
over the working region within a desired tolerance. However,

. as explained in Section 2.5, the trajectory algorithm requires

a4 matrix whose elements are 'radius X magnetic vector potential'
at the nodes of a suitable mesh in the r-z plane. Therefore,
the loop parameters are used to generate this matrix, which then

- becomes the working representation of the field for the main

ray-tracing part of the program. Whether the chosen loops rep-
resent the desired field accurately or not, the field derived
from the loops is always a true solution of Laplace's equation.

The reasons for this choice of method, and its implementation,
will now be discussed in more detail.

3.1 The Vector Potential Matrix

The ray-tracing .nutine derives information about the magnetic
field by extracting the values at the 9 nearest nodes of a
potential matrix for each ring at each time step. These values
are then interpolated by subroutine INTRA to give the gradients
at the position of the ring. Since the magnetic field is static,
a scalar potential matrix could be used. But it is found that
the magnetic field terms can be more effectively integrated into

‘the ray-tracing routine if the vector-potential is used, with

each value muitiplied by R. The vector potential is a less

[4] H.K. Detweiler and J.E. Rowe, 'Electron Dynamics and -
Energy Conversion in O-Type Linear Beam Devices' in
'Advances in Microwaves', Vol. f, 1971, Academic Press,
p. 35. The pair of equations (14) on p. 39 do not
satisfy Laplace.
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familiar concept but it takes a very simple form for axi-

symmetric fields, and is easily calculated from formulas to

be given. It should be remembered that the use of vector :
potential involves vector cross products, so that the radial
differences in the matrix determine the axial field and vice

versa. .

3.2 Th2 Magnetic Vector Potential

.gor ? general axisymmetric field, the vector potential at
R,Z) is

R
1
A=-§ j r B, dr (3-1)
) ' .
= §%§ « (flux through circle of Radius R) (3-1a)

The direction of the vector A is circumferential. The quan-
tity to be stored in the matrix element corresponding to
(r,z) is M = rA, and the field components are then given by

_d M S - | -
B, =% %% ¢ B, = T oz (3-2)

3.2.1 Uniform Field

If the field is uniform

Bz = Bo independent of r

Br =0 everywhere.

Then
M(R,Z) = R.A = R2B°/2

Thus the matrix for a uniform field reéion is easily recog-
nizable: in each column, the values are proportional to O, 1,
4, 9, etc., and all columns are identical.

-21=




However, for the uniform field case, the ray-tracing program
will be diverted to a simpler set of equations in which only
the axial component B, occurs, so that it is not necessary to

construct the M matrix at all. This includes the case of zero
field.

3.2.2 General Axisymmetric Field

The basic sources of an axisymmetric magnetic field are loops
of current flowing in planes perpendicular to the axis. If
the field is generated by a solenoid, there is an obvious cor-
respondence between these mathematical current loops and the
actual turns of the coil. But if the physical source is a
permanent magnet, one can still visualize the billions of
'Amperian' currents circulating in the aligned molecules, can-
celling each other everywhere in the interior (for uniform
magnetization), but adding up to a large surface current dens-
ity at free surfaces that are not perpendicular to the direc-
tion of magnetization (Figure 7). It should be noted that the
kind of ring magnet often used in TWTs has two such surfaces,
the inner and outer cylindrical surfaces, with Amperian cur-
rents in opposite directions. The correct representation of
this magnet therefore requires two sets of current loops of
opposite polarity located on the inner and outer diameters.
The writer has seen quite large-scale attempts to compute
fields based on the assumption that the field can be repre-
sented by a single current sheet or set of loops. This is
only true if one confines attention to the region close to the
axis: we shall find that in this case (which is common in TWTs
of course) a single set of coils can be sufficient; but it
should be remembered that this is not generally true.

The most common textbook expression for the field is an ex-
pansion in terms of the axial values and their differentials.
Evidently the writers of textbooks have never actually carried
out this calculation because, while algebraically sound, the
method has numerical instabilities which make it useless in
practical cases _5!. It only works if one restricts oneself
to paraxial cases, a limitation which we have specifically re-
Jjected, or if the axial values of the field are known with
machine accuracy (order of 8 digits or more). The values can
only be known with this kind of accuracy if one has derived
them mathematically from the 'sources' Just described, which
implies that one knows what the sources are. 1If one dces know

[5] J.R.M. Vaughan, 'Representation of Axisymmetric Magnetic
Fields in Computer Programs', IEEE Transactions on Elec-
tron Devices, ED-19 #2, February 1972, pp. 144-151.
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this, then it is much more natural to derive the desired
matrix M directly from the sources than via the axial dif-
ferentials. If what one knows is really a set of data values
of the field, then the procedure will be, first to find a set
of sources -- ideal current loops -- which will represent the
data, and then to derive M as before. Several methods of find-
ing appropriate loop parameters in practical cases have been
described [6].

Since the field is axisymmetric, every current loop is cen-
tered on the axis and perpendicular to it; each has three
parameters: axial position Z4, radius R4 and current Iq; the
writer prefers to use the 'strength' Mq = pyI4/2m as an
equivalent parameter.

The axial -positions of the loops are unrestricted: the grid
covers one period of the magnet structure in the axial direc-
tion, but loops lying outside that axial range can be con-
trivuting to the field within the range. For 'single period'
focusing, for example, the period covers two consecutive cavi-
ties; the field is represented by four coils, two in the geps
of these cavities, and one in the next cavity gap on eitber
side, so the two latter have z positions outside the range of
the grid.

The radius of a coil is restrictei: physically, it must be

greater than the tunnel radius, otherwise an electron could
encouirter a field singularity. This condition is in practice

only violated if a mistake has been made in caiculating (or
entering) the coil data. But when we use a wotential grid to
represent the field, a somewhat stronger ccadition is required:

the coil must lie not only outside the turmnel, but beyond the
outermost grid line by about 0.5 mesh sc¢ that no mesh point

can lie too close to the singularity. In practice, the correct
coil position for a typical PFM struccure is at about 1.4 or

1.5 times the tunnel radius, so this condition only comes into
play if a very coarse mesh is used (NMR = 2 or 3, for example).

'The program checks each coil radius, and if it is too small for
the mesh size chosen, it will automatically increase the radius

by a factor Cg to bring it to the minimum acceptable value. It
simul taneously increases the strength by a factor Cg5/1+.25C (C5-1)),
which restores the field strength on the axis to thé corrsc

value. A diagnostic is printed specifving the new values assigned.

[6] J.R.M. Vaughan, °Methods of Finding the Parameters of
Ideal Current Locps for Computer Simulation of Magnetic
Fields', IEEE Transactions on Electron Devices, ED-21
#5, May 1974, pp. 310-312.
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For a nonuniform solenoid focused case, the coil radii will
all be much larger, and the probiem would not arise even at
Nmgr = 2-

In the 'inch-gauss' or 'millimeter-gauss' units to be used
for data input (‘see Section 3.3), tne 'strength' of a single
loop of radius Rq inches or mm generating a field of G4 gauss
at its center is R1G1/ﬂ.

' The flux through the circle R,Z due to the source R

ie ] | 10 295 14
- 1
$ = u I (RR,)? (% - c) K(c) - £ E(c)J (3-3)
: ' I
where cz = 4RR1//{kR+R1)2 + (2-21)%} ' 3 (3-4)

and X and E are the complete elliptic integrals, modulus c.
(The alternative expansion in Legendre polynomials has very
slow convergence over much of the range we shall need.)

Combining (3-3) with (3-1a) to obtain A, and multiplying by
R we have

c

I o
M(R,2) = 32 (R} [(2 - c| K(c) - £ E(c)] (3-5)

where the reason for using u011/2ﬂ as a coil parameter is
now evident. . :

For values of ¢ 2 0.2, (3-5) can be evaluated by using the
elliptic integral subroutine ELIVA, which is incorporated
in the program. It is significantly faster than the IBM
routine. For ¢ < 0.2, the terms in the square bracket be-
come nearly equal, and we improve the accuracy by replacing
them with the power series expansion’

3 . |
[ }: Eﬁ; 1 + % 02 + %g% cl+ + %%g 06) (3-6)

[7] J. Jeans, 'The Mathematical Theory of Electricity and
Magnetism', Cambridge Univ. Press, 5th Ed. 1933, p. 443.
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The last term is <‘l0"4

for ¢ < .2, so furthe. teims are un-
necessary. :

3.3 Program Input

In line with the policy of inputting data in familiar or con-
venient units, the coil data will be called for in inch-gauvss
or mil. imeter-gauss units. These are then converted to MKS
units vsing CLIN = .0254 or .001, and CMAG = .0001 (for gauss
to Teslu). Note that (3-4) camnot be interpreted directly in
mesh units, because the mesh units normally differ for R and
Z; it could, of course, be modified to allow for this, but it
appears simpler to keep the R's and Z's in meters and evaluate
(3-4) and (3-5) as written. .

Thus, if the magnet period is Ly inches, and is divided into
NMA meshes axially, the.Z values are

Ly * CLIN ¥ I/NMA for I = 1 to Ny, (3-7)

or for I

1 to Ny,/2 (3-7a)
if the magnet period has Z symmetry.

Similarly if the turnel radius is A, inches, and is divided
into NMR meshes, the R values are

Ay * CLIN * J/NMR for J = 1 to Nyp + 1. (3-8)

Subroutine MAGVA evaluates (3-5), using (3-4) and (3-6)
where appropriate, for these ranges c¢f I and J, for each
coil. The M values for several coils are additive: although
they are strictly vectors, they all have the same direction
(normal to the R-Z plane) so they can be added algebraically.
The yoI4/2w terms in (3-5) are the entered strengths M, mul-
tiplied by CMAG x CLIN. '

The number of coils riecessary to represent one period of the
field has never so far exceeded 10; 4 coils are sufficient

for ordinary 'single period' focusing, and 8 for double period.
In either case, only half the matrix need be calculated, the
other half being the same with reversed signs. For cases

such as the multi-coil nonuniform solenoid, the whole wmatrix
must be; calculated.




The remaining elements of the full matrix can ther be filled
in without further calculation:

M(R,Q):M(R,NMA) for R = 1 to Nyp + 1
M(R, -1) = M (R, Ny, -1) for R = 1 to Nyp + 1
M(R, NMA+1) =M (R, 1) for R = 1 to Nyp + 1 (3-9)
M (0, Z) =0 for Z = -1 to Ny, + 1
M (-1, 2) =M (1, Z) for Z = -1 to Ny, + 1

The program will allow three options for the magnetic poten-
tial matrix: :

i) Compute the matrix and discard.it at the end of the
run.

ii) Compute the matrix and save it on a file MAGMAT for
future use. '

iii) Read in the matrix from MAGMAT.

The nominal matrix dimensions N, and N are stored with the
matrix, and in case (iii) are cgﬁpared Wtn the specified
values as a safeguard against reading in an incorrect matrix.

The complete process of generating the magnetic vector poten-
tial matrix from the original specification of the field is
summarized in the flow chart in Figure 6.

There remains the question of location of the magnet period

ir. relation to the cavities: the matrix is only needed for the
last k cavities in which the ring model of the beam is to be
used (k ~ 10). The convention adopted is that the Ny,'th

grid line of the last magnet period coincides with the mid-
plane in the tunnel following the last cavity. Then as many
repetitions of the magnet period are added prior to this as
are necessary to extend back over at least k+1 cavities (since
if we change from the disc to the ring mcdel at cavity k, some
elements of the beam segment will still be back in cavity k-1).
For example, if the tube has 50 cavities, or which the last 10
are to be computed with the ring model, and if 'double period'
focusing is used (magnet period = & cavity periods), then mag-
net period 1 will cover cavities 39-42, period 2 cavities 43-46,
and period 3 cavities 47-50. If 12 cavities were to bg used,
then 4 magnet periods would be needed, starting at cavity 35.
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